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FOREWORD

This report on the methodology investigation of the software
maturity mocel validation represents the completion of Phase II of
the investigation, during which the software reliability models
recommended in the Phase I report were applied to the Mobile
Subscriber Equipment (MSE) system for validation. This
investigation concerns only the software reliability aspect of
software maturity. It does not address any other facet of software
maturity.

This report has been developed in accordance with Test and
Evaluation Command (TECOM) Reg 70-17 and consists of the following
sections and appendices:

a. Section 1 is an executive summary of the investigation.
b. Section 2 contains the details of the investigation.
c. Section 3 consists of the following appendices:

Appendix A Methodology Investigation Proposal
Appendix B - References

Appendix C - Acronyms and Abbreviations

Appendix D - SMERFS Models

Appendix E - Example Software Reliability Test Plan

Appendix F - Glossary
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SECTION 1. SUMMARY

1.1 BACKGROUND

Software reliability 1is an essential component in the
estimation of Command, Control, Communications, and Intelligence
(C’T) system reliability. Software comylexity in develcoment and
maintenance is steadily increasing. This potentia’ly decreases
both software and system reliability. Test data shows that
suftware errors occur more often than hardware errors. Many of the
softw.are errors go undetected until the system is tested in the
field. As a software error goes undetected, the costs to correct
it increase. These are some of the reasons why software
reliability is becoming increasingly important (refererce 1).
Software reliability is probably the most important £factor of
software quality (reference 2). Software managers and engineers
must be able to measure and predict software reliability, to reduce
software development and ..aintenance costs, and to determine if a
software system is sufficiently rzliable for fielding.

System reliability is measured in stochastic terms. That is,
system reliability is "the probability that the system performs its
assigned functions under specified environmental conditions for a
given period of time" (Reference 3). The weight given to
roliability when rating a system’s overall quality depends on the
criticality of the system’s mission. According to one Air Force
study, "In the past, the approach to determining or predicting
system reliability has been to look at the hardware components,
calculate their combined reliability, assume software reliability
was one, and use the hardware reliability number as the system
reliability". That study exposes the inadequacy of this approach.
That study indicates that "software is a significant contributor to
system failures" and it identifies software reliability models as
one dimension of research to improve system reliability prediction
and estimation.

Software reliability may be characterized in terms that
closely parallel the definition of reliability for hardware
systems. One definition of software reliability is "the frequency
and criticality of program failure where failure is an unacceptable
effect or behavior under permissible operating conditions.”" Like
hardware, software reliability can be represented by the rate at
which errors are uncovered and corrected. Unlike hardware, there
is less evidence that empirical error data (collected during
testing and after release of the software) can be used to develop
accurate predictive models of software reliability.

It is difficult to give a precise definition of software

reliability. Many attempts have been made to standardize the
definition; however, no one definition is accepted as standard
(reference 1). Some might say that software is reliable if it is
correct. Software is rel.able if it meets its initial
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specifications and performs as specified. This definition does not
recognize the possipility that the software specific ‘tions may be
incomplete and incorrect. fhis definition confuses software
reliability with software correctness. Svftware reliability
concerns any software failure, whereas software correctness
concerns the degree to which software design and code conform to
specificat.oncs and standards (reference 4).

Musa defines software reliability e3 '"the probailility of
failure-free operation of a computer program for a specified time
in a specified environment" (reference 2). This definition fits
this methodology report since the concern of this investigation 1is
to ascertain software reliability measures which can be combined
with hardware reliability measures to determine system

reliabiiity. The definition 1is tied to the idea that the
reliability of a software system (i.e., hardware, software, and
manual operatiocnz) 1is dependent upon the reliability of its
hardware and software components. By usinc this definition, tne

dependence of software reliability on other software quality
factors such as correctness .nd maintainability is recognize .

In Musa’s definition of software reliability, failure-£free is
defined as having no occurrence 0f a software failure. Software
fa:lure is defined as a deviation of the operation of a computer
program from its requirements (reference 2). Software failure and
software error are used interchangeably in this report. Software
fault is defined for this report as any incorrectness induced in
software through human error.

Musa’s definition of softwere failure implies that software

failure is a dynamic process. That is, the program has to be
executing for a failure to occur. Scftware failures can be
characterized in the following ways: tim- to failure, time

interval between failures, cumulative failures experienced up to a
given time, and failures experienced during a time interval.

Software faults cause software failures. A software fault is
created when a programmer makes a coding error. Faults are also
created when a systems analyst incorrectly specifies a reguirement
or when a programmer analyst produces erroneous program design
language (PDL). Each of these latter instances can lead to
seemingly correct code which, when executed, propagates an
erroneous requirement or design.

Program size and complexity are at a point where it is
impossible to check the extremely large number of logic paths
through the code (reference 5). For example, large scale real-time
embedded systems such as the Trident-I Fire Control System (TFCS)
have an extremely large number of logic paths (reference 6). It is
impractical to check every conceivabl: logic path in its computer
code. To avoid checking every path, software reliakility
estimation researches ways to quantify the aumbers of faults
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remaining in a program. This form of estimation can tell us how
often the faults cause failures. The primary objective ot software
reliability pradiction is that given a software component, what is
the probability that it will fail in a given time period, o=
equivalently, what is the expected time duration petweer failures?
In hardware, if the mean time between failure (MTBF) is too small,
then more reliable components or redundant components are used to
achieve the requived improvements. In software, the improved
reliability is obtained by replacing erroneous code with debugged
code.

Over the past two decades, many models and estimation
procedures have Dbeen proposed to quantify the reliability of
software. Examples of such models are known as software
reliability models. Dr. William H. Farr of the Naval Surface
Warfare Center (NCWC) conducted a survey of reliability modeling
and estimation techniques in which he identified three categories
of software =reliability models (reference 6): error seeding
models, data domain models, and time domain models. Dr. Amrit Goel
of Syracuse University categorizeu software reliability models in
a similar way through a survey of his own (reference 3).

a. Error seeding/tagging models involve the intentional
introduction of faults into a piece of software. These models
assume the distribution of original software faults is the same as
the distribution of the seeded faults. The total number of
software faults inherent in the original software are estimated
from counts of software faults discovered during testing, using the
ratico of discovered seeded faults to the total number of seeded
faults.

b. Data domain models escimate a program’s current
reliability. It is based on the ratio of the number of successful
runs observed to the total number of runs made. The estimated
reliability is simply the total number of successful runs divided
by the total number o¢f test runs. Run is an arbitrary term
generally associated with some function software performs
(reference 2).

¢. Time domain models have received the jreatest emphasis in
the literature and in real world applications. These models find
their roots in hardware reliability modeling. The concepts of
hardware reliability modeling were adapted for use in modeling
software reliabilitv. Some of these models have terms which do not
have hardware counterparts (e.g., the number of reraining faults).

(1) Each model makes assumptions that can vary from
moziel to model (reference 6). One of the assumptions made by the
Geometric Poisson Model is that each discovered software fault is
either corrected or not counted again. Brooks and Mctley’s Models
(BAMMCD) assume that software faults can be reintroduced in the
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software fault correction process. Musa’s Execution Time Model
assumes the software failure rate is constant and changes only at
each software fault correction. Moranda’s Geometric Model (GEOMOD)
assumes the software failure rate is initially a constant which
decreases in a geometric progression as software failures are
detected.

(2) Each model makes certain assumptions about the
independence of software failures. For example, Moranda’s GEOMOD
assumes the detections of software failures are independent. This
assumption is needed to model software failure as an exponentially

decaying process. The independence assumptions made by these
models are often challenged. Considerable evidence shows the
independence assumptions are valid (reference 2). The confusion

arises from the argument that software faults can be related; not
independent. The possibility of related faults does not imply that
software failures are not independent.

Neither survey addresses the category of software reliability
models based on the internal characteristics of the program. These
models provide a priori estimates of software failures. Thay
predict the number of software failures before operational data is
available. Dozens of such models estimate the number of faults in
a program based on static characteristics of the program. These
are generally related to software complexity measures (reference
7). These models predict the total number of failures using the
fault reduction ratio. This is the number of inherent faults in
the program divided by the fault-reduction factor. The fault
reduction factor 1is estimated from empirical data involving
previous software development projects. Evidence shows this factor
is project independent, although such a value is not known at
present (reference 2).

The model designers do not propose use of models without
checking the reasonableness of their assumptions. The current
trend is to incorporate one or more time domain models in a
software package which includes routines to perform statistical
analysis of the models. These packages include options to check
the reasonableness of the model assumptions by seeing how well the
model fits the data (reference 5).

The Department of Defense (DoD) has issued a directive which
addresses the reliability problem (reference 8). Department of
Defense Directive (DoDD) 5000.3, "Test and Evaluation," authorizes
the issuance and publication of DoD 5000.3-M-3 (reference 9),
"Software Test and Evaluation Manual." This manual states that
"[the Test and Evaluation Master Plan (TEMP)] must address the
development process and the planning for Post Deployment Software

Support (PDSS), as well as quantification of software maturity,
system-level performance, and reliability, availability, and
maintainability (RAM) parameters." The manual also states the TEMP

must provide an approcach to relate software reliability to system

6




reliability, and must describe how system-level RAM indicators
integrate software and hardware perfcrmance characteristics.
Consistent, gquantifiable measures of software reliability are
required to conform to this directive. '~ Only then can system
reliability be derived in a meaningful way.

1.2 PROBLEM

DoDD 5000.3-M-3 requires quantification of software
reliability to help ascertain system reliability (reference 9).
However, the suitability of various reliability models for
providing quantitative reliability parameters with available test
data had not been demonstrated. This investigation evaluated the
suitability of candidate software reliability models for providing
these quantitative estimates for test items reguiring evaluation by
TECOM.

1.3 OBJECTIVE
The objective of this investigation is to establish an

accepted method of computing software reliability to help assess
the maturity of software in embedded computer resources (ECR).

1.3.1 Completed Phase I goals Include:

a. Development of a set of candidate software reliability
models to be screened for use in estimating software reliability.

b. Identification of approaches other than reliability models
to estimate software reliability.

c. Completion of an evaluation of the set of candidate

software reliability models and other approaches to determine if
they can be applied to developmental testing (DT).

1.3.2 Phase II Goals Include:

a. Providing recommendations for a set of models or any other
methods to help determine the status of software during DT.

b. Evaluation of these recommendations by conducting example
reliability testing on the MSE system, for which field test data
are readily available.

c. Providing recommendations for additional data collection
for future C?’I system testing.




1.4 PROCEDURES

During Phase I, methods for assessing software reliability
were identified. Once identified, the models and methods were
evaluated based on the following criteria:

a. Does the model or method provide probabilistic and
quantitative estimates of program reliability?

b. Is the model or method sufficiently documented?

c. Does the model or method have realistic data requirements?
d. Is the model or method readily available?

e. Is the model or method applicable to DT?

Phase I resulted in a report on these models and methods which
recommended the use of a set of software reliability models known
as the Statistical Modeling and Estimation of Reliability Functions
for Software (SMERFS) package. SMERFS is available free of charge
from the NSWC. For a complete description of the SMERFS package,
see Appendix D.

Phase II applied software reliability models in the TECOM
testing environment. MSE was chosen as a test case because, like
most C?’I systems, its system configuration is comprised of multiple
instances of the same software component. Unlike the case of a
single software component on one machine, this test configuration
required interleaving of failure data to obtain a true picture of
software reliability.

The MSE test data was obtained from the Operational Test and
Evaluation Agency’s (OTEA’s) Communications Reliability and
Maintainability (COMRAM) data base and stored on floppy disks.
Part of +the data basa was extracted based on the data base
structure and the required inputs to the SMERFS models.

The eight reliability models in the SMERFS package were
acquired. Four of these models were used to estimate the software
reliability of the major MSE software components. The results of
applying this methodology are described in the following section.

1.5 RESULTS

The data used for this test case came from the TECOM MSE

testing. The test data used in this investigation includes
software failures reported for the Node Center Switch (NCS) and the
Large Extension Node (LEN) components of the MSE. These are

composed ¢f the same software and similar hosts. Software failure
data from the four NCSs and one LEN which participated in the test
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were aggregated to provide an overall reliability figure for the

software associated with these components. Appendix E illustrates

an example software reliability test plan.

The 85 aggregate software failures reported for all 5

components (4 NCSs and 1 LEN) were used. The total run time for
each instance of the software, measured in wall clock time, was 71
days. Total run time for the software was (71 days/component) (5
components) = 355 days. A simple check of model output
reasonableness 1is available by dividing total time by total
failures as a rough estimator of MTBF. Thus (355 days)/ (85
failures) = 4.2 days between failures.

Each of the models in SMERFS to which available data applied
was used in this investigation.

The output for each model follows:

a. The LAVMOD maximum likelihood (ML) estimate was 6.6 days
MTBF; the least squares (LS) estimate was 4.6 days MTBF.

b. The GEOMOD ML estimate was 4.4 days MTBF with 95%
confidence that the MTBF lies between 2.54 and 6.33 days; the LS
estimate was 4.9 days MTBF.

c. The Generalized Poisson Model (GPOMOD), which operates on
the intervals between errors, provided a ML estimate of one
software failure per five day period. The model predicted that
there are 260 total errors within the software, with 95% confidence
that the total number of software errors is between 252 and 267.
The model estimated the number of errors remaining as 176, with 95%
confidence that this estimate is between 168 and 183 remaining
errors. The GEOMOD LS estimator predicted 341 total software
errors, with 257 errors remaining undetected. This method also
provided an estimate of one software failure per five day period.

d. The Norman Schneidewind Model (SDWMOD) provided an LS
estimate of 1.2 errors per five day period.

All estimates of MTBF fall within the same range of 4 to 5
days, except the LAVMOD ML estimator. It was slightly higher. The
4 to 5 days MTBF is also in line with the 4.2 day MUBF estimate
derived from (total time)/ (total failures).

For a more detailed discussion of model estimates, see Section
2 of this report.




1.6 ANALYSIS

The determination of adequate software reliability
requirements could pose a significant problem. Probabilistic,
quantitative requirements for software and system reliability are
required criteria against which to evaluate software systems
through testing. While minimum criteria may be established through
operational necessity, the feasibility of such requirements may be
difficult to establish.

Acquiring the additional data needed to run both Central
Processing Unit {(CPU) time and wall clock time models could be done
with reasonable effort. Since the additional data should be
available during testing, it could be collected. Collecting such
data could be required as part of software system tests, so the
entire set of SMERFS models is available for use in system,
evaluation. '

The output of reliability models is suitable for determining
system reliability. The software reliability estimates presented
in the results section, can be used to produce estimates of the
software failure rate. The software failure rate, the hardware
failure rate, and the knowledge of the configuration of the system
under test, can be used to determine overall system reliability
(Reference 2).

The SMERFS models provide quantitative, probabilistic
estimates of software reliability. The estimates are used in the
computation of system reliability, as required by DoDD 5000.3-M-3.
The models are usable 1in the TECOM test environment, as
demonstrated by the application of these models to test data
collected as part of the MSE field test. Provision of test methods
to collect CPU time between failure data would enhance the utility
of these models, and provide for reasonable estimates of software
reliability during TECOM testing.

1.7 CONCLUSIONS

The Phase 1II goals of the software reliability model
investigation were achieved. The conclusions follow:

a. The SMERFS software reliability models are usable in the
TECOM testing environment.

b. The software reliability estimates provided by the models
satisfy the requirement to provide quantitative estimates of
software and system reliability.

c. The collection of CPU time between failure data would
enhance the utility of the SMERFS models.

10




1.8 RECOMMENDATIONS
The following items are recommended:

a. Procedures should be developed to define the explicit
method of combining the hardware and software reliability estimates
into a system reliability estimate.

b. The Army’s test data collection should be enhanced to
include CPU time expended between software errcr occurrences and
starting and enaing times of testing.

¢c. Quantitative requirements for software system reliability
should be included as part of test plans such as the TEMP.
Software and system reliability could then be used, with these
quantitative criteria for system evaluation.

11
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SECTION 2. DETAILS OF INVESTIGATION

Phase I of this methodology investigation identified a set of
potential models and methods for use by TECOM in evaluation of
software and system reliability. The models and methods included
the United States Army Electronic Proving Ground (USAEPG) software
Performance Parameter Assessment (SPPA) model, SMERFS, and three
methods which estimate levels of software maturity. Software
reliability estimation is the primary focus of this investigation.
Maturity estimation methods were not recommended. The SPPA was not
recommended because of unrealistic input data requirements. The
SMERFS package was recommended because it met all of the evaluation
criteria, described in Section 1.4 of this report.

This section will provide application details of the SMERFS
models to MSE field test data, accomplished in Phase II. All data
lists, plots, and results are from SMERFS output.

The raw data used for these tests is provided in Table 2-I.
Smoothed raw data plots are provided as Figure 2-1. The graphs in
Figure 2-1 show time to "failure n" (1 <= n <= 85), from "failure
n-1". The LAVMOD and the GEOMOD model use the data in this form to
determine mean time between software failures. Figure 2-2 presents
some standard statistics on the test data.

13




Table 2Z-I. NCS and LEN Software Time Between Failure
Raw Data {Minutes).
Error Time Between Error Time Between
1 9078 27 2420
2 6180 28 1795
3 3041 29 5083
4 683 30 723
5 2921 31 3109
6 60 32 4557
7 8025 33 1135
8 755 ' 34 1630
9 308 - 35 15510
10 30257 36 104
11 5588 37 108
12 41987 38 164
13 135 39 2590
14 575 . 40 1305
15 16 41 198
16 5748 42 362
17 2228 a3 3614
18 4013 ' 44 12
19 8836 .45 4585
20 3075 ' 46 1535
21 747 47 20
22 23613 - 48 365
23 2450 49 2309
24 1175 50 2965
25 3614 51 1595
26 4705 52 5525
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Table 2-I. NCS and LEN Software Time Between Failure Raw Data
(Minutes) (Continued).
Error Time Between Error Time Between
53 22643 70 0
54 5540 71 16
55 1675 72 12872
56 490 73 1815
57 500 74 414
58 1456 75 2315
59 3935 76 1426
60 2158 77 150
61 3102 78 50
62 3580 79 5567
63 4740 80 98040
64 20660 81 7354
65 7360 82 4310
66 687 83 6159
67 225 84 7347
68 300 85 4895
69 111
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Smoothed Raw Data. Points 36 To 85.
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Figure 2-1. Time-To-Failure Raw Data.
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WALL CLOCK TIME-BETWEEN-ERROR

WITH TOTAL TESTING TIME OF 495578.00
AND TOTAL ERRORED TIME OF 495578.00
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MEDIAN OF THE DATA * 23090 *
LOWER & UPPER HINGES * 500. 5083 *
MINIMUM & MAXIMUM * 0 98040 *
NUMBER OF ENTRIES * 85 *
AVERAGE OF THE DATA * 5830.3294 *
STD. DEV. & VARIANCE * 12831.117 164637563 *
SKEWNESS & KURTOSIS * 5.0730806 30.78382 *
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Figure 2-2. SMERFS Summary Statistics.




2.1 LITTLEWOOP AND VERRALL BAYESIAN MODEL RESULTS

The LAVMOD assumes that successive times between software

failures are independent, exponentially distributed random
variables x(i), 1 =1,2,...,n with parameter H(i). Each parameter
represents the failure rate within one time interval. The varying

parameters account for changing failure rates due to debugging and
introduction of new errors into the software as a result of the
debugging process. The |'(i) are assumed indenendent, [ distributed
variables with parameters o and n(i). The functions m(i) represent
the quality of the programmer(s) and the programming task
difficulty.

In other words, the model assumes that the software has a
given failure rate at the start of testing. As bugs are discovered
and fixed, the failure rate changes based on the quality of the
programmer (s) and the difficulty of the task. Note: For the MSE
test case, software failures were assumed fixed at discovery (not
counted again). The test data is used to determine the a parameter
and the n (i) function coefficients (assuming either a linear or
quadratic function), which define the a priori failure rate. The
a posteriori failure rate is then determined using the a pricri
rate and the test data.

The results provided from this model, based on the test data
in Table 2-I, are as follows:

Maximum Likelihood Estimator For T(i) and o, Linear m(i)

INITIAL ESTIMATES FOR BETA (0) AND ZETA (1) .

1.0 0.5
ML MODEL ESTIMATES AFTER 35 ITERATIONS ARE:
ALPHA 0 1.2926847
BETRA(0) : 2666.4551
BETA(1) : 1.6041024

THE EXPECTED TIME (To Failure) IS (5.98 days)

Using initial estimates closer to the estimates derived for the
linear m(i) function,

INITIAL ESTIMATES FOR BETA(0) AND BETA(l) .

2000.0 1.0
ML MOLFL ESTIMATES AFTIER 37 ITERATIONS ARE:
ALPHA 0 1.2925768
BETA(O) : 26€5.5628
BETA(l) : 1.5356956

THE EXPECTED TIME (To Failure) IS (6.01 days)
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Maximum Likelihood Estimator For T(i) and ¢,

Quadratic w(1i)

INITIAL ESTIMATES FOR BETA‘O) AND BETA(1l).

1.0 0.5
MI. MODEL ESTIMATES AFTER 62 ITERATIONS ARE:
ALPHA : 1.2975483
BETA(0) : 2514.4319
BETA(l) : .0041818599

THE EXPECTED TIME (To Failure) IS (6.6 days)

Using initial estimates closer to the estimates derived for the
coefficients of the w(i) functlion,

INITIAL ESTIMATES FOR BETA(0) AND BETA(l).

2514.0 0.0418
ML MODEL ESTIMATES AFTER 13 ITERATIONS ARE:
ALPHA : 1.2975502
BETA(0) : 2514.0003
BETA (1) : .042743287

THE EXPECTED TIME (To Failure) IS (6.6 days)

Figure 2.1-1 presents a graph of the time-to-failure
prediction (the points labeled "P") with the test data (the points

labeled "*"), using the maximum likelihood estimator with linear
m(i) .
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Maximum Likelihood Estimatocr, Linear m(i)
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Figure 2.1-1. Bayesian Model Maximum Likelihood Time-To-Failure

Prediction Versus Test Data.

Least Squares Estimator For m(i) and a, Linear m(i)

INITIAL ESTIMATES FOR BETA(0) AND BETA(1l).

1.0 0.5
LS MODEL ESTIMATES AFTER 75 ITERATIONS ARE:
ALPHA : 1.0008941
BETA(0) : 4.5549322
BETA(1l) : .01530675

THE EXPECTED TIME (To Failure) IS (4.6 days)

Using initial estimates closer to the derived values for the
coefficients of m(i),

INITIAL ESTIMATES FOR BETA (0) AND BETA(1l).

4555.0 0.0153
LS MODEL ESTIMATES AFTER 56 ITERATIONS ARE:
ALPHA : 1.8953041
BETA(0) : 4560.8694
BETA(1l) : 15.326705
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THE EXPECTED TIME (To Failure) IS (4.6 days)

Figure 2.1-2 presents plots of the predicted times between
failure along with the test data points. Test data points are
denoted by "*", predicted points are denoted by "P", and points at
which predicted and actual values coincide are denoted by "$". The
figure includes a plot of the residuals.

The graphs show the least squares estimator is the better fit

to the data. The results of the LS estimator are close to the
check value of 4.2 days, derived by (total time)/(total failures).

21




Least Scuares Estimator, Linear ® (i), Points 20 To 69
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Residuals, Least Squares Estimator, Linear m (i), Points 20 To 69

18142.170 !
1 % *
!
! *
1
T 1 *
I !
M f
E !
!
! *
! *  * x %
| * * * % *x % * k%
! xk kK * * X k% * x %
- 6164.42 t ox * ok kkk kkk k  k*k * % % * % k%
$ommmmmm tommmm— - pommmm—ee o e LT Fommmmm +
20 29 39 49 59 69
ERROR

Figure 2.1-2. Bayesian Model Least Squares Time-to-Failure
Prediction Versus Test Data.
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2.2 MORANDA’S GEOMETRIC MODEL RESULTS

The GEOMOD assumes the software hazard rate is reduced by the
same amount at the time of each error detection. The software
hazard rate is defined as the conditional probability +hat a
software failure occurs in an interval of time, given that the
software has not failed up to the beginning of that time interval.
The hazard rate function decreases in a geometric progression as
the detection of errors occurs. The test data are used in this
model to determine the proportionality constant of the hazard rate.

The results of this model, based on the data in Table 2-I, are
as follows:

Maximum Likelihood Estimate of Hazard Rate Proportionality Constant

INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT.
0.99

ML MODEL ESTIMATES AFTER 3 ITERATIONS ARE:

PRCPURTIONALITY CONSTANT OF THE MODEL IS .99782789
WITH 95% CONFIDENCE INTERVAL OF (.96803084 , 1.0)

THE INITIAL HAZARD RATE IS .00018827987
WITH 95% CONFIDENCE INTERVAL OF (0.0, 0.0059418343)

THE MEAN TIME BEFORE THE NEXT FAILURE IS (4.4 days)
WITH 95% CONFIDENCE INTERVAL OF (2.54, 6.33 days)

THE CURRENT "PURIFICATION LEVEL" IS .16875474
WITH 95% CONFIDENCE INTERVAL OF (0.0, 0.7778357)

The purification level indicates the error-freeness of the
software. On a scale of 0 to 1, 1 is defined as an error-free
program.

Figure 2.2-1 presents a plot of the actual and predicted
values of the time between failures. The figure includes a plot of
the residuals for the GEOMOD predictions.

23




Gecmetric Model, Maximum Likelihood Estimator
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Geometric Model Maximum Likelihood Time-To-Failure
Prediction Versus Test Data.
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Least Sguares Estimate of Hazard Rate Proportionality Constant

INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT.
0.99

LS MODEL ESTIMATES AFTER 5 ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS .99532964

THE INITIAL HAZARD RATE IS .00021067985

THE MEAN TIME BEFORE THE NEXT FAILURE IS (4.9 days)

THE CURRENT "PURIFICATION LEVEL" IS .32827792

The MTBF is slightly higher for the LS estimate than for the
ML estimate. The LS estimate of 4.9 days falls well within the 95%
confidence interval for the ML estimate (2.54 to 6.33 days). Both
estimates seem reasonable in comparison with the rough check
estimate of 4.2 days. The LS estimate for the MTBF for the LAVMOD
falls between the GEOMOD estimates.

Figure 2.2-2 presents a plot of the predicted versus actual

values for the GEOMOD LS estimator, along with a plot of the
residuals.
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Least Squares Estimator, Geometric Model
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2.3 GENERALIZED POISSON MODEL RESULTS

Figure 2.3-1 provides the total test time of 355 days broken
up into 71 5-day intervals. Software failures reported during each
interval are counted and the counts during each interval are used
in the statistical analysis. The GPOMOD model and the SDWMOD use
the test data in this form. Figure 2.3-2 presents summary
statistics on the raw test data.

The GPOMOD assumes the expected number of software errors
discovered in any time interval is proportional to the product of
the total number of existing software errors and some function of
the amount of time spent in testing for software errors.

This model estimates the constant of proportionality, total
errors, and errors remaining. Given a time interval, this model
computes the expected number of failures encountered in that
interval.

The estimates produced by the GPOMOD model are as follows:

Maximum Likelihood Estimate With Schick-Wolverton Weighting

Note that Schick-Wolverton weighting is defined as

Weight = (x(i)? )/2, i = 1,2,...,n, where each x(i) is a
sample point.

INITIAL ESTIMATE OF THE TOTAL NUMBER OF ERRORS.
90.0

ML MODEL ESTIMATES, USING SCHICK-WOLVERTON WEIGHTING, AFTER
11 ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS .00044340933
WITH 95% CONFIDENCE INTERVAL (-.00025764047, .0011444591)

THE TOTAL NUMBER OF ERRORS IS 259.6439
WITH 95% CONFIDENCE INTERVAL (252.51749, 266.77031)

THE REMAINING NUMBER OF ERRORS IS 175.6439
WITH 95% CONFIDENCE INTERVAL (168.51749, 182.77031)

PROJECTED LENGTH OF THE TESTING PERIOD.
1.0
THE EXPECTED NUMBER OF ERRORS IS .038719368
WITH 95% CONFIDENCE INTERVAL (.022184252, .055254483)

PROJECTED LENGTH OF THE TESTING PERIOD.
10.0
THE EXPECTED NUMBER OF ERRORS IS 3.8719368
WITH 95% CONFIDENCE INTERVAL (2.2184252, 5.5254483)
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Figure 2.3-1. Interval Count Raw Data.
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INTERVAL DATA WITH EQUAL LENGTHS

WITH ERROR COUNTS TOTALING TO 85

ERKKRARK AR ARk KA K K kK KA AR KRk KKk KKK KAk khkkksk
MEDIAN OF THE DATA * 1 *
LOWER & UPPER HINGES * 0 2 *
MINIMUM AND MAXIMUM * 0 7 *
NUMBER OF ENTRIES * 71 *
AVERAGE OF THE DATA * 1.1971831 *
STD. DEV. & VARIANCE * 1.5731653 2.47484091 *
SKEWNESS & KURTOSIS * 1.4448046 1.7009447 *

KAk kAR AR KKK AR AA A AR A KKK KKK KK KRR KR KK AR K KKK KK

Figure 2.3-2. Interval Count Summary Statistics.
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PROJECTED LENGTH OF THE TESTING PERIOD.
20.0

THE EXPECTED NUMBER OF ERRORS IS 15.487747
WITH 95% CONFIDENCE INTERVAL (8.8737008, 22.101793)

PROJECTED LENGTH OF THE TESTING PERICD.
71.0
THE EXPECTED NUMBER OF ERRORS IS 195.18433
WITH 95% CONFIDENCE INTERVAL (111.83081, 278.53785)

The results show the number of expected errors grow more than
geometrically as testing progresses. Longer testing intervals are
weighted so that more errors are uncovered. No Chi-~Square goodness
of fit test was run for this estimator.

Maximum Likelihood Estimate With Selected Weighting

Selected weighting function is given by
Weight = (x(i))a, i =1,2,...,n, x(i) are sample points.
DESIRED ALPHA. 2.0

INITIAL ESTIMATE OF THE TOTAL NUMBER OF ERRORS.
90.0

ML MODEL ESTIMATES, USING THE SELECTED WEIGHTING FUNCTION,
AFTER 11 ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS .00022170466
WITH 95% CONFIDENCE INTERVAL (-.00012882023, .00057222956)

THE TOTAL NUMBER OF ERRORS IS .259.6439
WITH 95% CONFIDENCE INTERVAL (254.60477, 264.68304)

THE REMAINING NUMBER OF ERRORS IS 175.6439
WITH 95% CONFIDENCE INTERVAL (170.60477E+03, 180.68304)

PROJECTED LENGTH OF THE TESTING PERIOD.
1.0
THE EXPECTED NUMBER OF ERRORS IS .038719368
WITH 95% CONFIDENCE INTERVAL (.022184252, .055254483)

PROJECTED LENGTH OF THE TESTING PERIOD.
10.0
THE EXPECTED NUMBER OF ERRORS IS 3.87193¢68
WITH 95% CONFIDENCE INTERVAL (2.2184252, 5.5254483)

PROJECTED LENGTH OF THE TESTING PERIOD.
20.0
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THE EXPECTED NUMBER OF ERRORS IS 15.487747
WITH 95% CONFIDENCE INTERVAL (8.8737008, 22.101793)

PROJECTED LENGTH OF THE TESTING PERIOD.
71.0
THE EXPECTED NUMBER OF ERRORS IS 195.18433
WITH 95% CONFIDENCE INTERVAL (111.83081, 278.53785)

Figure 2.3-3 presents plots of the GPOMOD ML estimator, using
the weighting function (x(i))a, with the test data. Figure 2.3-4
shows the residual plots for this model. Each interval in the
figures represents five days of test data. No Chi-Square goodness
of fit test was run for this case.
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Maximum Likelihood Estimator, (x(i))%, Points 1 To 50
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Figure 2.3-3. Poissor Model Maximum Likelihood Interval Count
Prediction, with Selected Alpha, Versus Test Data.
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Maximum Likelihood Estimator, x(i)%, Points 1 To 50
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Figure 2.3-4.

Poissun Model Residuals Maximum Likelihood with

Selected Alpha.
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Maxzimum Likelihood Estimate With Estimated Weighting

INITIAL ESTIMATE FOR ALPHA.
1.5

INITIAL ESTIMATE OF THE TOTAL NUMBER OF ERRORS.
80.0

ML MODEL ESTIMATES, USING ESTIMATED WEIGHTING, AFTER 36
ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS 5017.0868

THE TOTAL NUMBER OF ERRORS IS 259.6439
THE REMAINING NUMBER OF ERRORS I3 175.6439
AND ALPHA IS 2.9232488

PROJECIED LENGTH OF THE TESTING PERICD.
1.0
THE EXPECTED NUMBER OF ERRORS IS .0087620361

PROJECTED LENGTH OF THE TESTING PERIOD.
10.0
THE EXPECTED NUMBER OF ERRORS IS 7.3426671

PROJECTED LENGTH OF THE TESTING PERIOD.
20.0
THE EXPECTED NUMBER OF ERRORS IS 55.697%76

PROJECTED LENGTH OF THE TESTING PERIOD.

71.0
THE EXPECTED NUMBER OF ERRORS IS 2260.9647

THE CHI-SQUARE STATISTIC IS 65.764831 WITH 67 DEGREES OF
FREEDOM.

The hypothesis +<hat the estimator fits the data would be
accepted with o = 0.05 (critical region > 88).

Figure 2.3-5 presents the plots of the estimator along with
the actual data. Figure 2.3-6 shows the residuals for this model.
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Maximum Likelihood, Estimated «, Points 1 To 50
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Figure 2.3-5. Poisson Model Maximum Likelihood Interwval Count
Prediction, with Estimated Alpha, Versus Test Data.
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Maximum Likelihood, Estimated o, Points 1 To 50
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Figure 2.3-6.

Poisson Model Residuals, Maximum Likelihood, with
Estimated Alpha.
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Least Scuares Estimate, Schick-Wolverton Weighting

INITIAL ESTIMATE OF THE TOTAL NUMBER OF ERRORS.
80.0

LS MODEL ESTIMATES, USING SCHICK-WOLVERTON WEIGHTING, AFTER 2
ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS .00032167169
THE TOTAL NUMBER OF ERRORS IS 341.38826
THE REMAINING NUMBER OF ERRORS IS 257.38826

FROJECTED LENGTH OF THE TESTING PERIOD.
1.0
THE EXPECTED NUMBER OF ERRORS IS .041236422

PROJECTED LENGTH OF THE TESTING PERIOD.
10.0
THE EXPECTED NUMBER OF ERRORS IS 4.1236422

PROJECTED LENGTH OF THE TESTING PERIOD.
20.0
THE EXPECTED NUMBER OF ERRORS IS 16.494569

PROJECTED LENGTH OF THE TESTING PERIOD.
71.0
THE EXPECTED NUMBER OF ERRORS IS 207.87280

THE CHI-SQUARE STATISTIC IS 65.379035 WITH 68 DEGREES OF
FREEDOM.

The hypothesis that the estimator fits the data would be
accepted with a = 0.05. Figure 2.3-7 presents the plots of the
Generalized Poisson model estimator, with Schick-Wolverton
weighting, along with the actual data. Figure 2.3-8 shows the
residual plots for this estimator.
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Least Squares, Schick-Wolverton Weighting, Points 1 To 50

14 !
!
!
!
C !
o) !
U !
N ! *
T !
! * %
! %* * * *
! * * * *
| PPSPPPPPPPPPPPP $SPPPPPPPSPPSSPSSSPPPPPPPPPPP *
! * % *x % * * PSPPSPP
O !* %* % % * %k % %k * Kk KKk*k * % * * % * * *
tomome —e- R e ——— e tomcmmmmme +
1 10 20 30 40 50

INTERVAL

Least Squares, Schick-Wolverton Weighting, Points 22 To 71
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Figure 2.3-7. Poisson Model Least Squares Interval Count
Prediction, with Schick-Wolverton Weighting, Versus Test Data.
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Least Squares, Schick-Wolverton Weighting, Points 22 To 71
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Poisson Model Residuals, Least Squares, with
Schick-Wolverton Weighting.
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Least Sgquares Estimate With Selected Alpha Weighting
DESIRED ALPHA. 2.0

INITIAL ESTIMATE OF THE TOTAL NUMBER OF ERRORS.
90.0

LS MODEL ESTIMATES, USING SELECTED WEIGHTING, AFTER 2
ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS 160.83585
THE TOTAL NUMBER OF ERRORS IS 341.38826
THE REMAINING NUMBER OF ERRORS IS 257.38826

PROJECTED LENGTH OF THE TESTING PERIOD.
1.0
THE EXPECTED NUMBER OF ERFCRS IS .041236422

PROJECTED LENGTH OF THE TESTING PERIOD.
10.0
THE EXPECTED NUMBER OF ERRORS IS 4.1236422

PROJECTED LENGTH OF THE TESTING PERIOD.
20.0
THE EXPECTED NUMBER OF ERRORS IS 16.494569

PROJECTED LENGTH OF THE TESTING PERIOD.
71.0
THE EXPECTED NUMBER OF ERRORS IS 207.87280

THE CHI-SQUARE STATISTIC IS 65.379035 WITH 68 DEGREES OF
FREEDOM.

The hypothesis that the estimator fits the data would be
accepted, with o = 0.05. No plots of this estimator were made, but
the plots do not differ greatly from previous figures.

The least squares estimate with estimated o did not run
successfully.

The plots of the data versus the estimators derived through
the use of the GPOMOD clearly show the model fits the data. This
conclusion is supported by the Chi-Square goodness of fit tests,
which confirm that the models fit the data. The maximum likelihood
estimators and the least squares estimators do not concur on the
number of errors remaining in the software, nor on total errors in
the software. The number of errors expected in specified time
intervals is fairly close.
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Comparison of the results from the model runs with the rough
estimator developed in Section 1 (4.2 days/failure or 0.239
failures/day) highlights the assumptions under which this model
runs. The rough estimate and the GPOMOD results are fairly close
for small test intervals. They differ significantly for large test
intervals. The model assumption that more software errors are
detected as the test time interval increases is discernable through
this comparison. The validity of that assumption, however, is
questionable. Regardless, under the conditions of this MSE test
case (fixed five daytime intervals), the GPOMOD provides good
estimators of the test data.

To use the Chi-Square test for goodness of fit with this

model, it was necessary to combine cells, because every expected
cell count was less than five.
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2.4 SCHNEIDEWIND MODEL RESULTS

The SDWMOD uses interval count data to estimate reliability.
The model assumes the process of error detection follows a non-
homogeneous Poisson process (NHPP) where the error detection rate
decreases exponentially.

The SDWMOD also assumes that recent error counts are more
useful than earlier ones. To implement this, there are three
possible "treatments" under this model:

a. Use all error counts from all testing intervals.

b. Use only error counts from recent intervals.

c. Use a cumulative error count for earlier test intervals
and individual error counts for the most recent test intervals.

The model assumes the mean number of errors for the ith test
interval is given as:

H(i) = o (exp(- B(i - 1)) - exp(- B(i)))/8B.

The model estimates the parameters o and £ from the data.

Treatment 1

INITIAL ESTIMATE FOR THE PARAMETER BETA
1.0

TREATMENT 1 MODEL ESTIMATES AFTER 85 ITERATIONS ARE:
BETA .0034769164
ALPHA 1.3510256

AND THE WEIGHTED SUMS-OF-SQUARES BETWEEN THE PREDICTED AND
OBSERVED ERROR COUNTS IS 195.87153

ESTIMATE OF THE NUMBER OF ERRORS EXPECTED IN THE NEXT TESTING
PERIOD IS 1.0536549

ESTIMATE OF THE NUMBER OF TESTING PERIODS NEEDED TO DISCOVER
THE NEXT 5.0 ERRORS IS 4.7765922

ESTIMATE OF THE NUMBER OF TESTING PERIODS NEEDED TO DISCOVER
THE NEXT 10.0 ERRORS IS 9.6338549

ESTIMATE OF THE NUMBER OF TESTING PERIODS NEEDED TO DISCOVER
THE NEXT 20.0 ERRORS IS 19.601623
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THE CHI-SQUARE STATISTIC IS 44.406500 WITH 68 DEGREES OF
FREEDOM.

The hypothesis that the model fits the data is accepted, with

o = 0.005. Figure 2.4-1 presents the plots of the model along with
the actual data. Figure 2.4-2 shows the residual plot.

INITIAL ESTIMATE FOR THE PARAMETER BETA
3.650000000000000E~007

TREATMENT 1 MODEL ESTIMATES AFTER 1 ITERATIONS ARE:

BETA .00000043903637

ALPHA 1.1972018

AND THE WEIGHTED SUMS-OF-SQUARES BETWEEN THE PREDICTED AND
OBSERVED ERROR COUNTS IS 173.24204

ESTIMATE OF THE NUMBER OF ERRORS EXPECTED IN THE NEXT TESTING
PERIOD IS 1.1971642

ESTIMATE OF THE NUMBER OF TESTING PERIODS NEEDED TO DISCOVER
THE NEXT 5.0 ERRORS IS 4.1765395

ESTIMATE OF THE NUMBER OF TESTING PERIODS NEEDED TO DISCOVER
THE NEXT 10.0 ERRORS IS 8.3530867

ESTIMATE OF THE NUMBER OF TESTING PERIODS NEEDED TO DISCOVER
THE NEXT 20.0 ERRORS IS 16.706204
THE CHI-SQUARE STATISTIC IS 38.790525 WITH 68 DEGREES OF
FREEDOM.
The hypothesis that the model fits the data is accepted, with

a = 0.005. Figure 2.4-3 presents plcts of the estimator along with
the actual data. Figure 2.4-4 shows the residual.
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Schneidewind Treatment 1 Estimator Versus Actual
Data.
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Treatment 1, Points 22 To 71
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A second run was made using Treatment 1, with a closer initial
estimate of the parameter 8.

Figure 2.4-2. Schneidewind Treatment 1 Residual.
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Schneidewind Treatment 1 Estimator, with Improved

Initial Estimate for Beta, Versus Test Data.
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Treatment 1, Points 22 To 71
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Figure 2.4-4. Schneidewind Treatment 1 Residual Improved Beta
Estimate.

Treatments 2 and 3 did not provide as close a fit as Treatment
1, according to the Chi-Square goodness of fit test and the sum of
squares indicator. The second run of treatment 1 of this model
provided the smallest Chi-Square value (ky half) of ary derived for
this report.

The second run estimate of 1.2 failures per 5-day period
agrees very closely with the rough estimate of 1.195 failures per
S5-day period. It agrees with the Bayesian and Geometric model
results.
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2.5 ANALYSIS AND CONCLUSIONS

Each of the four models tested are applicable and fit the
data. All model runs presented fit the data acceptably, according
to Chi-Square tests and examination of plots of predicted versus
actual values. The SDWMOD (Treatment 1) fit the data better than
any other model. 0f the remaining models in the SMERFS package,
NHPP model and the BAMMOD would not converge to an estimate for
this data. The other models use only CPU time between failure
data. Addition of procedures to collect CPU time data would
greatly enhance the use of SMERFS.

The results presented above show that useful quantities, such
as the number of software errors remaining, or the nvnmber of
testing intervals required to eliminate software errors, can be
calculated using the SMERFS package. Most important, reliability
values can be determined using the package. MTBF data 1is
calculated by all of the above models, either directly or
indirectly. The MTBF estimate provided by this package can be used
to> determine software component reliability, given knowledge about
the type and quality of software maintenance which the software
will undergo.

Using this reliability value, with hardware reliability values
and system configuration information, software and system
reliability figures can be included in test reports. This
satisfies the requirement of DoDD 5000.3-M-3 (reference 10).
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APPENDIX A

METHODOLOGY INVESTIGATION PROPOSAL

A-1. TITLE. Software Maturity Model Validation.

A-2. CATEGORY. All Department of the Army (DA) mission areas
for systems containing embedded computer resources (ECR) are
supported.

A-3. INSTALLATION OR FIELD OPERATING ACTIVITY. U.S. Army
Electronic Proving Ground, Fort Huachuca, Arizona 85613-7110.

A-4. PRINCIPAL INVESTIGATOR. Mr. K. Van Karsen, Software and
Interoperability Division, STEEP-ET-DS, AUTOVON 879-02090/2092.

A~5. STATEMENT OF THE PROBLEM. Essentially all systems being
developed employ some use of computers and software. Unlike
hardware, the metrics for "software RAM" are ill-defined.
Hereafter, "maturity" will be used instead of RAM. DoD Directive
5000.3 requires a quantitative measure of software maturity; DT
evaluators and testers are required to develop methods for
determining software maturity. TECOM cannot quantitatively
measure the maturity of the software embedded in computer driven
systenms.

A-6. BACKGROUND. A number of models have been developed to
predict software maturity. However, none have been validated.
Under TECOM project number 7-CO~RD9-EP1-004, USAEPG derived the
SPPA, a mathematical model which provided estimates of software
maturity. Unlike previous models, the SPPA took into
consideration the repair process, wherein repairs need not be
made directly after encountering a fault (bug). The SPPA model
was used on data from Lipow and from the Position Location
Reporting System (PLRS) project. A final report was submitted to
Headgquarters (HQ) TECOM and subsequently approved for
distribution. Subsequent to the development of SPPA, new models
have appeared, but have not been evaluated for applicability to
the developmental testing environment. Also, some researchers
have developed an integrated package of various models with the
intent that one or more of the models would be appropriate for a
given situation. USAEPG has acquired a government-owned package,
courtesy of NSWC, containing eight different models. However,
the suitability of these mcdels with respect to the availability
of required data has not been determined.

A~7. GOAL. To establish an accepted method for assessing the
maturity of the software in ECR.




A-8. DESCRIPTION OF INVESTIGATION.

a. Summary. USAEPG will evaluate currently available
software maturity models and propose the best for use in TECOM
software testing.

b. Detailed Approach. USEPG will:

(1) Phase I - First Year’'s Effort:

(a) Identify software maturity (reliability)
models available from industry, academia, and government
agencies.

(b) Examine the data requirements of the wvarious
models with respect to the data available during DT.
(2) Phase II - Second Year’s Effort:

(a) Select a set of available models which meet the
constraints imposed by data availability.

(b) Consult with cognizant individuals on the
applicability of the candidate models to TECOM's test and
evaluation mission, and select a final set of models for use
during DT.

(c) Demonstrate the recommended methods by applying
data from a selected tactical system, and evaluate the results.

¢. Final Product(s).
(1) Phase I:

(a) A set of initial candidate software maturity
models.

(b) Evaluation of the data requirements for
application to DT.
(2) Phase II:
Recommendations for a set of models to determine

software maturity during DT.

d. Coordination. Coordination with TECOM activities will
be accomplished through the TECOM Software Technical Committee
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(TSOTEC) . Coordination with other organizations will be
performed directly.

e. Environmental Impact Statement. Execution of this task
will not have an adverse impact on the quality of the
environment.

f. Health Hazard Statement. Execution of this task will
not involve health hazards to personnel.

A-9. JUSTIFICATION.

a. Association with Mission. One of TECOM’s missions is to
perform developmental tests on ECR. The investigation is needed
to advance the concept of software maturity. The Army Science
Board report on testing of electronic systems, with emphasis on
software intensive systems, advocates RAM (maturity) programs as
essential.

b. Association with Methodology/Instrumentation Program.
This project supports thrusts of the TECOM Methodology Program to
improve the quality of testing as well as the test process.
Instrumentation developed or acquired previously would be used to
form the basis of instrumentation required by the methodology.

c. Present Capability, Limitations, Improvement and Impact
on Testing if Not Approved.

(1) Present Capability. The current test capability
provides information in the form of TIRs, for assessing software
maturity.

{2} Limitations. Appropriate maturity models have not
been identified and validated for application to DT, even though
some raw data (TIRs) are available for analysis. Most prior
attempts to assess maturity have avoided the lack of a validated
model by using rather crude methods. For example, maturity per
DoD-STD-1679A is determined on the basis of the number and
severity of unresolved software errors at the time of
acceptance. The number of latent faults which may surface after
deployment is not estimated.

(3) Improvement. USAEPG and other organizations have
developed software maturity models which may be suitable for DT
use. Identification and validation of a model which will work
within the DT environment will greatly improve estimated maturity

quality.

(4) Impact on Testing if Not Approved. The intent of
DoDD 5000.3 is not met unless a quantitative means of evaluating
maturity is provided. Reporting maturity as the amount of
discovered faults, while ignoring latent faults, results in a
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distorted view of actual maturity, given the current test
techniques.

(5) Dollar Savings. No dollar savings can be assessed
at this time. The potential of this project is that a
quantitative measure of software maturity can be attained;
provide insight to Program Manager'’s (PM’s) and evaluator’s as to
the maturity of a given software system to prevent fielding of an
immature system and the inherent high cost to fix once fielded.

(6) Workload. Over the past 5 years, USAEPG has
experienced 17 tests requiring an evaluation of software
maturity.

Examples of items anticipated for testing include:

Test
Item Fiscal Year (FY) 88 89 90
MSE (Mobile Subscriber Equipment) X X X
JTIDS (Joint Tactical Information

Distribution System) X
MCs (Maneuver Control System) X X X
VISTA (Very Intelligent Surveillance

and Target Acquisition) X X X
FADDC?I X X X
JINTACCS (Joint Interoperability of

Tactical Command and Control Systems X X X
EPLRS (formerly PJH) (Enhanced Position

Location Reporting System) X X X
GPS (Global Positioning System) X
ASAS (All Source Analysis System) X
AFATDS (Advanced Field Artillery Tactical

Data System) X X X

(7) Association with Requirements Documents. DoD
Directive 5000.3 requires a quantitative measure of software
maturity for each development phase. To date, there are no
accepted measuring schemes.

(8) Others. N/A.

A-10. RESOURCES

a. Financial.




Personnel
Compensation

Travel

Contractual
Support

Consultants &
Other Svcs

Materials &
Supplies

Equipment

General &
Admin costs

Subtotals

FY Totals

Dollars

FYg88

In-House

10.0

2.0

12.0

Out-of-House

52.0

53.0

65.0

(Thousands)

FY89
In-House Out-of-House

12.0
3.0

45.0

5.0

15.0 50.0
65.0




b. Explanation of Cost Categories.
(1) Personnel Compensation. This cost represents
compensation chargeable to the investigation for using technical
or other civilian personnel assigned to the investigation.

(2) Travel. This represents cost incurred while
visiting government and industry facilities.

(3) Contractual Support. Performance of the
investigation will be accomplished with resources provided under
an existing support contract.

(4) Consultants and Other Services. N/A.

(5) Material and Supplies. N/A.

(6) Eguipment. N/A.

(7) General and Administrative Costs. N/A.

¢c. Obligation Plan.
FyY8s

Fiscal Quarter (FQ) 1 2 3 4

TOTAL
Obligation Rate 50.0 5.0 5.0 5.0
65.0
(Thousands)

d. In-House Personnel.

(1) In-House Personnel Requirements by Specialty.

Man-hours

FY88 Only
Total
Number Required Available
Required
Elect Engr, GS-0855 1 450 450
450

(2) Resolution of Non-Available Personnel. N/A




A-11. INVESTIGATION SCHEDULE

FY88 FY89

ONDJFMAMJIJAS ONDJFMAMJIJIAS

In-House - .- .= .=, =.-=1I - .- . = .= .=, -R
Contracts = - - - = = = = - - = =~ e
Consultants

Symbols: =~--- Active investigation work (all categories)

Contract monitoring (in-house only)

I Interim Report

R Final report due at HQ, TECOM

A-12. ASSOCIATION WITH TOP PROGRAM. TECOM Test Operations
Procedure (TOP) 1-1-056, Software Testing, requires the
assessment of software maturity. The results of this

investigation may provide recommended changes to TOP 1-1-056 w1th
regards to software maturity.

FOR THE COMMANDER:

ROBERT E. REINER
Chief, Modernization and
Advanced Concepts Division
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APPENDIX C

ACRONYMS AND ABBREVIATIONS

Administrative

Advanced Field Artillery Tactical Data System
Air Force Operational Test and Evaluation
Center Pamphlet

Army Material Command - Pamphlet

All Source Analysis System

Automatic Voice Network

Broosrs and Motley’s Model

Comprression Factor

Command, Control, Communications, und
Intelligence

Communications Reliability and
Maintainability

Central Processing Unit

Calendar Time Comr~onent

Circuat Switching On-Line Operational Program
Department of the Army

Data Input

Deviation

Department of Defense

Department of Defense Directive

Digital Subscriber Voice Terminal
Developmental Testing

Embedded Computer Resources

Electrical

Engineer

Enhanced Position Location Reporting System
Exponential

Fiscal Quarter

Geometric Model

Generalized Poisson Model

Fiscal Year

Global Positioning System

Headquarters

International Business Machines Corporation
Joint Interoperability of Tactical Command
and Control Systems

Joint Tactical Information Distribution
System

Littlewood and Verrall Model

Large Extension Node

Least Squares

Maximum Number of Iterations

Maneuver Control System

Maximum Likelihood

Mobile Subscriber Equipment

Mobile Subscriber Radio Terminal
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Mean Time Between Failure

Mean Time To Failure

Musa Model

Node Center Switch

Non-Homogeneous Poisson Process
Naval Surface Warfare Center

NHPP Interval Count Model

NHPP Time Model

Occurrence

Operational Test and Evaluation Agency
Program Design Language

Post Deployment Software Support
PLRS Joint Hybrid

Position Location Reporting System
Program Manager

Rome Air Development Center
Reliability, Availability, and
Maintainability

Radio Access Unit

System Control Center

Norman Schneidewind’s Model

Small Extension Node

Statistical Modeling and Estimaticn of
Reliability Functions for Software

Software Performance Parameter Assessment

Standard

Services

Test and Evaluaticn Command

Test and Evaluation Master Plan
Trident-I Fire Control System

Test Incident Report

Test Operations Procedure
Technical Report

TECOM Software Technical Committee
United States Army

United States Army Electronic Proving Ground
Very Intelligent Surveillance and Target

Acquisition




APPENDIX D

SMERF'S MODELS

D-1. GENERAI DISCUSSION.

A set of software reliability models for use in estimating
software maturity .s described below. The eight models are
contained in the S4ERFS interactive software reliability
estimation package. Four of these models are time between
failure models and four are error count models. The following
information is provided for each model: model description, model
assumptions, model inputs, model outputs. For more detailed
information on the various prompts and options provided by these
models, consult the SMERFS User’s Guide and Farr’s Survey of
Software Reliability Modeling and Estimation. The time between
and error count models are invoked by an execution time data
model menu and an interval data model menu, respectively (Figures
D-1.1 and D-1.2).

PLEASE ENTER THE TIME MODEL OPTION, OR ZERO FOR A LIST.
THE AVAILABLE WALL CLOCK OR CPU TIME MODELS ARE

1 THE LITTLEWOOD AND VERRALL BAYESIAN MODEL

2 THE MUSA EXECUTION TIME MODEL

3 THE GEOMETRIC MODEL

4 THE NHPP MODEL FOR TIME - BETWEEN - ERROR OCC.

5 RETURN TO THE MAIN PROGRAM
PLEASE ENTER THE MODEL OPTION.

FWALL CLOCKAND CPU TEBE DATA, THEN:
PLEASE ENTER ONE FOR WC TBE OR TWO FOR CPU TBE.
*** DATATYPE ERROR; PLEASE TRY AGAIN (AFTER THE NEXT PROMPT).
ENDIF

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-1.1. Menu for Execution Time Models.
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PLEASE ENTER THE COUNT MODEL OFTION, OR ZERO FOR A LIST.
THE AVAILABLE ERROR COUNT MODELS ARE

1 THE GENERALIZED POISSON MODEL

2 THE NON - HOMOGENEOUS POISSON MODEL

3 THE BROOKS AND MOTLEY MODEL

4 THE SCHNEIDEWIND MODEL

5 RETURN TO THE MAIN PROGRAM.
PLEASE ENTER THE MODEL OPTION.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER'Ss
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-1.2. Menu for Interval Data Models.




D-2. THE LITTLEWOOD AND VERRALL BAYESIAN RELIABILITY GROWTH
MODEL.

D-2.1. Model Description. Proposed by Littlewood and Verrall,
this execution time data model tries to take into account the
fact that the software correction process can introduce errors.

D-2.2. Model Assumptions. This model makes the following
assumptions:

a. The software is operated in a manner similar to its
expected operational usage.

b. Successive times between software failures are
independent, exponentially distributed random variakles x (i), i=
1,2,...,n with parameter { (i).

c. The p(i) are independent, I distributed variables with
parameters ® and w(i). o is a I' function parameter. = (i) is a
function which describes a programmer’s quality and the
programming task’s difficulty. Littlewood and Verrall recommend
a simple linear or quadratic function for the form of m. This
recommendation is implemented in SMERFS.

D-2.3. Model Inputs. The model inputs include data entered via
the SMERFS data input module, DATINP, and responses to prompts
from the SMERFS LAVMOD module.

D-2.3.1. DATINP Inputs. The data input via the DATINP consists
of the times between the error occurrences (i.e., the x(i)’s)
measured in CPU or wall clock time. This is the raw data needed
to run the model (i.e., the model data requirements).

D-2.3.2. LAVMOD Prompts. LAVMOD prompts consist of description
and list, input, and prediction vector creation prompts.

D-2.3.2.1. LAVMOD Description and List Prompts. SMERFS promptc
the user through LAVMOD to see if the user wishes to see a list
of the model s assumptions and data requirements. The model
assumptions are those discussed above. The model data
requirements are the inputs to DATINP.

D-2.3.2.2. LAVMOD Input and Prediction Vector Creation Prompts.
The LAVMOD input prompts are exhibited in the menu in Figure
D-2.1. The first prompt in that menu lets the user specify the
desired method of estimating o, the I' function parameter, and the
linear or quadratic coefficients of the m function. The two
methods of estimation allowed are maximum likelihood and least
squares. The second prompt allows the user to specify whether he
or she wants a linear or quadratic ® finction. The third prompt
lets the user enter initial estimates for the linear or quadratic
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coefficients known as the B parameters. The final prompt lets
the user enter the number of iterations to perform to obtain the
maximum likelihood or least squares estimates of the o and B8

parameters.

D-2.4. Model Outputs. If successful convergence is achieved,
LAVMOD outputs the expected mean time before the next error;
otherwise, it lets the user try a larger number of iterations.
In either case, estimates for the o and B parameters for the =«
function discussed above are output. The LAVMOD successful
convergence output menu is seen in Figure D-2.2.

D-3. JOHN MUSA’S EXECUTION TIME MODEL.

D-3.1. Model Description. This execution time data model is
based upon the amount of CPU time used in testing rather than
upon the amount of wall clock or calendar time. In addition to
modeling software reliability, this model can be used to model
allocation of resources for testing segments and relate CPU time
to wall clock time. The model is important for this reason.

D-3.2. Model Assumptions. The following assumptions are those
needed only for reliability modeling. The assumptions for
modeling resource allocation are documented in the SMERFS User’s
Guide.

a. The software is operated in a way similar to its
expected operational usage.

b. The probability of detecting any given error is in no
way affected by the occurrence of detecting another error (i.e.,
error detections are independent).

¢. Every failure of software is observed.

d. The execution times between software failures are
piecewise exponentially distributed. That is, the hazard rate
function is a constant which changes whenever an error is
corrected.

e. The ratio of the hazard rate to the number of errors
remaining in the program is a constant.

£f. The ratio of the rate of fault correction to the rate of
failure occurrence 1is a constant.




PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FCR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION. ™

WHICH OF THE FOLLOWING FUNCTIONS DO YOU DESIRE
TO USE AS THE PHI(l) IN THE GAMMA DISTRIBUTION?
THE GAMMA (S USED AS THE PRIOR WITH PARAMETERS

ALPHA AND PHI(l)

1. PHI() = BETA(O) + BETA(1) * | (LINEAR)

OR
2. PHI(I) = BETA(O) + BETA(1) * I**2 (QUADRATIC).

PLEASE ENTER INITIAL ESTIMATES FOR BETA(O) AND BETA(1).
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Es;;matian ¢f Reliability Functions for Software (SMERFS) USER'’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-2.1. LAVMOD Input Prompts.

___MODEL ESTIMATES AFTER___ITERATIONS ARE:
ALPHA
BETA(0)
BETA(1)

THE FUNCTION EVALUATED AT THESE POINTS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE MEAN TIME BEFORE
THE NEXT ERROR; ELSE ZERO.

THE EXPECTED TIME IS

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Es;xmation of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-2.2. LAVMOD Successful Convergence Output.
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D-3.3. Model Inputs. The model inputs include data entered
through the SMERFS DATINP and responses to prompts from the
SMERFS MUSMOD module.

D-3.3.1. DATINP Inputs. The data input via the DATINP module
consists of the times between software failure occurrences
measured in CPU time.

D-3.3.2. MUSMOD Prompts. The Musa Model (MUSMOD) prompts
consist of description and list, input, and prediction vector
creation prompts.

D-3.3.2.1. MUSMOD Description and List Prompts. SMERFS prompts
the user through MUSMOD to see if the user wishes to see a list
of the model’s assumptions and data requirements. The model
assumptions are those discussed above. The model data
requirements are the inputs to DATINP and the testing compression
factor, C. This factor is the average ratio of the error
detection rate during testing to that during operational use.
This factor allows for changes in the operational environment.

D-3.3.2.2. MUSMOD Input and Prediction Vector Creution Prompts.
The MUSMOD input prompts are exhibited in Figure D-3.1. The

first prompt lets the user specify the testing compression
factor. If there is no basis for estimation of this factor, a
conservative approach would be to let C equal one. The second
prompt allows the user to enter an initial estimate of the
required number of software failures that must be experienced to
uncover all software faults within the program. The final prompt
lets the user enter the maximum number of iterations to compute
M, which is the required number of failures one needs to
experience to uncover all faults within the program.




PLEASE ENTER AN ESTIMATE FOR THE TESTING COMPRESSION

FACTOR, C.
IT 1S THE AVERAGE RATE OF DETECTIONS OF ERRORS DURING

THE TESTING PHASE TO THAT DURING USE. (A CONSERVATIVE
VALUEIS 1.0).

PLEASE ENTER AN INITIAL ESTIMATE FOR THE TOTAL NUMBER
OF ERRORS THAT MUST BE DETECTED IN ORDER TO UNCOVER

ALL PROGRAM ERRORS.
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Esylmatlon of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-3.1. MUSMOD Input Prompts.




D-3.4. Model Outputs. If a solution is found before the maximum
number of iterations is reached, successful convergence output
occurs (Figure D-3.2). Otherwise, the user is allowed to repeat
execution of the MUSMOD. After successful output, the user is
prompted to see whether he or she wishes to run the Calendar Time
Component (CTC). This component computes resource allocation for
the testing segments. For further information on the description
and outputs of the Musa CTC, see the SMERFS User’s Guide.




rTHE MAX. LIKELIHOOD ESTIMATES AFTER ___ ITERATIONS ARE:

1. THE TOTAL NUMBER OF ERRORS THAT MUST BE DETECTED BEFORE
ALL ERRORS IN THE CODE ARE: FOUND IS

WITH APP. 95% C.l. OF ( ' )
2. THE MAXIMUM LIKELIHOOD ESTIMATE OF THE INITIAL MEAN TIME
BEFORE FAILURE (MTBF) FOR THE PROGRAM IS
WITH APP. 95% C.l. OF ( , )

THE ESTIMATE OF THE FAILURE MOMENT STATISTIC IS
WITH APP. 95% C.l. OF ( . )

THE ESTIMATE OF THE CURRENT MEAN TIME BEFORE THE NEXT
SOFTWARE ERROR OCCURRENCE 1S

AND THE ESTIMATE OF THE FUTURE RELIABILITY FOR THE SAME
AMOUNT OF COMPLETED TESTING TIME IS

PLEASE ENTER 1 TO ESTIMATE FUTURE RELIABILITY
MEASURES AND TESTING TIME REQUIRED TO ACHIEVE
SPECIFIED GOALS; ELSE ZERO.

PLEASE ENTER THE DESIRED GOAL FOR MTBF.

AN ADDITIONAL ERRORS NEED TO BE DETECTED TO
ACHIEVE THE DESIRED GOAL; AND THAT WILL CONSTITUTE AN
ADDITIONAL HOURS OF CPU TESTING TIME.

PLEASE ENTER 1 TO TRY ANOTHER GOAL FOR MTBF;
ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER'’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-3.2. MUSMOD Successful Convergence Output.




D-4. MORANDA’'S GEOMETRIC MODEL.

D-4.1. Model Description. This execution time data model is a
variation of the Jelinski-Moranda De-Eutrophication Model. The
process of de-eutrophication presumes that the software hazard
rate is reduced by the same amount at the time of each error
detection. The software hazard rate is defined as the
conditional probability that a software failure occurs in an
interval of time given that the software has not failed up to the
beginning of that time interval. The de~-eutrophication process
is geometric for this model because the hazard rate function
decreases in a geometric progression as the detection of errors
occurs.

D-4.2. Model Assumptions. The model presumes the following:

a. The software is operated in a way similar to its
expected operational usage.

b. The program will never be error free.

c. The probability of detecting a given error may not equal
the probability of detecting another given error.

d. The probability of detecting a given error is not
affected by the probability of detecting another given error
(i.e., the detection of errors is independent).

e. The rate at which errors are detected follows a
geometric progression which is constant between error
occurrences. This implies that errors become harder to detect as
debugging progresses.

D-4.3. Model Inputs. The model inputs include data entered
through the SMERFS DATINP and responses to prompts from the
SMERFS GEOMOD module.

D-4.3.1. DATINP Inputsgs. The data input via the DATINP module
consists of the time between software failure occurrences
measured in either CPU time or calendar (wall clock) time.

D-4.3.2. GEOMOD Prompts. GEOMOD prompts consist of description
and list, input, and prediction vector creation prompts.

D-4.3.2.1. GEOMOD Description and List Prompt. GEOMOD prompts
the user to see whether he or she wants a list of the model’s
assumptions and data requirements. The assumptions listed are
those discussed above. The data requirements of the model are
previously input to DATINP.

D-4.3.2.2. GEOMOD Input and Prediction Vector Creation Prompts.
The GEOMOD input prompts are exhibited in Figure D-4.1. The
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first prompt lets the user terminate model execution or indicate
the least squares or maximum likelihood method to estimate the
proportionality constant for the software hazard function. The
second prompt enables the user to enter an initial estimate for
this constant. The user should choose a number between 0 and 1
to guarantee convergence of the solution. The final prompt
allows the user to enter the maximum number of convergence
iterations for the estimation technique chosen.

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-4.1. GEOMOD Input Prompts.

D-4.4. Model Outputs. If a solution is found before the maximum
number of iterations is reached, successful convergence output
occurs (Figure D-4.2). Otherwise, the user is allowed to repeat
execution of the model. As can be seen from Figure D-4.2,
outputs include estimates for the proportionality constant,
initial hazard rate, mean time before the next failure, and
current purification level regardless of the estimation cechnique
chosen (i.e., ML or LS). If ML is chosen, it also provides 85
per cent confidence intervals for these estimates.

Since the model assumes infinite errors, it cannot compute
the total number of errors in the program. Instead, it estimates
the degree of "purification" for the program.
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1F THE MAXIMUM LIKELIHOOD METHOD WAS SELECTED, THEN:

ML MODEL ESTIMATES AFTER __ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF ( )
THE INITIALHAZARD RATE IS
WITH APP. 95% C.l. OF ( )
THE MEAN TIME BEFORE THE NEXT FAILURE IS
WITH APP. 95% C.I. OF ( )
THE CURRENT "PURIFICATION LEVEL" IS
WITH APP, 95% C.. OF ( )

ELSE IFTHE LEAST SQUARES METHOD WAS SELECTED, THEN:

LS MODEL ESTIMATES AFTER ___ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE INITIAL HAZARD RATE IS
THE MEAN TIME BEFORE THE NEXT FAILURE IS
THE CURRENT "PURIFICATION LEVEL" IS l

ENDIF

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-4.2. GEOMOD Successful Convergence Output.




\
|
D-5. ADAPTATION OF GOEL’'S NON-HOMOGENEOUS POISSON PROCESS MODEL. ‘
|

D-5.1. Model Description. This execution time data model i1s an
adaptation of Amrit Gecel’s NHPP interval count model.

D-5.2. Model Assumptions. This model’s assumptions include the
following:

a. The software is operated in a way similar its expected
to operational usage.

b. The probability of detecting any given software error is
the same as the probability of detecting any other given error.

¢. The cumulative number of software errors detected up to
a point in time are Poisson distributed. The expected number of
software errors in any small interval of time (t,t+0t) is
proportional to the number of undetected software errors at time
t.

d. The mean of the Poisson distribution, M(t), is a bounded
non-decreasing function. As the length of testing tends to
infinity, M(:) approaches the expected total nunber of eventually
detected software errors.

D-5.2. Model Inputs. The mcdel inputs include data entered
through the SMERFS DATINP module and response to prompts from the
SMERFS NPTMOD module.

D-5.3.1. DATINP Inputs. The data input via the SMERFS DATINP
consists of the time between software failure occurrences
measured in either CPU time o¢r calendar (wall clock) time.

D-5.3.2. NPTMOD Prompts. NPTMCD prompts consist of description
and list, input, and prediction vector creation prompts.

D-5.3.2.1. NPTMOD Description and List Prompts. NPTMOD prompts
the user to see whether he or she wants a list of the model’s
assumptions and data requirements. The assumptions listed are
those discussed above. The data requirements of the model are
previously input to DATINP.

D-5.3.2.2. NPTMOD Input and Prediction Vector Creation Prompts.
The NPTMOD input prompts are exhibited in Figure D-5.1. The
first prompc lets the user enter an initial estimate for the
prcportionality constant. The user should choose a number
between 0 and 1. The final prompt allows the user to enter the
maximum number of ite.ations.

D-5.4. Model Outputs. If a solution is found before the max ..um
number of it-vraticas is reached, successful convergence output
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occurs (Figure D-5.2). Otherwise, the user is allowed to repeat
execution of the model.




PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statisti i

: _ : 373 ’ stical Modeling and
Es;lmatlon of Reliability Functions for Software (SMERFg) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-5.1. NPTMOD Input Prompts.

MODEL ESTIMATES AFTER ___ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS

THE TOTAL NUMBER OF ERRORS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE RELIABILITY OF
THE PROGRAM FOR A SPECIFIED OPERATIONAL TIME BASED
ON THE CURRENT TESTING EFFORT; ELSE ZERO.

PLEASE ENTER THE SPECIFIED OPERATIONAL TIME.

THE ESTIMATED PROBABILITY THAT THE PROGRAM WILL
OPERATE WITHOUT ERROR FOR THE INPUT TIME IS
PLEASE ENTER 1 TO TRY ANOTHER OPERATIONAL TIME; ELSE ZERO.

PLEASE ENTER.1 FOR AN ESTIMATE OF THE TESTING TIME REQUIRED
TO ACHIEVE A SPECIFIED RELIABILITY FOR A SPECIFIED OPERATIONAL

TIME: ELSE ZERO. ,

ENTER DESIRED RELIABILITY AND SPECIFIED OPERATIONAL TIME.

THE REQUIRED TESTING TIME TO ACHIEVE THE DESIRED RELIABILITY
FOR THE SPECIFIED OPERATIONAL TIME IS

PLEASE ENTER 1 TO TRY DIFFERENT VALUES; ELSE ZERO.

Sou;ce:’ NSWC TR 54—373 Revision 1, Statistical Modeling and
Esglmatlon of Reliability Functions for Software (SMERF3) USER's
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-5.2. NPTMOD Successful Convergence Output.21
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D-6. THE GENERALIZED POISSON MODEL.

D-6.1. Model Description. This model, which is one of the four
models within SMERFS that obtains reliability estimates and
predictions for interval data, is analogous in form to other
models such as the Jelinski-Moranda, Lipow, and Schick-Wolverton
models. It is documented in a report by Schafer, Alter, Angus,
and Emoto written under contract to the Rome Air Development
Center (RADC).

D-6.2. Model Assumptions. The GPOMOD makes the following five
assumptions:

a. The software is operated in a way similar to its
expected operational usage.

b. In any time interval, the expected number of discovered
software errors is proportional to the product of the total
number of existing software errors and to some function of the
amount of time spent in testing for software errors. The
function is expressed as an exponential function; however, the
function could be a linear or parabolic function to allow for a
broader class of adaptability.

c. All errors occur with the same probability, and the
chance of any given error occurring in no way affects the
occurrence or lack of occurrence of any other error (i.e., the
errors are independent of each other).

d. Each error has equal severity.

e. At the end of the testing intervals, errors are
corrected without introducing new errors.

D-6.3. Model Inputs. The model inputs include data entered
through the SMERFS DATINP and responses to prompts from the
SMERFS GPOMOD module.

D-6.3.1. DATINP Inputs. The data input through the SMERFS
module consists of the lengths of the various testing intervals
and the number of software faults discovered in each testing
interval.

D-6.3.2. GPOMOD Prompts. GPOMOD prompts consist of description
and list, correction vector creation, input, and prediction
vector creation prompts.

D-6.3.2.1. GPOMOD Description and List Prompt. GPOMOD prompts
the user to see whether he or she wants a list of the model’s
assumptions and data requirements. The assumptions listed are
those discussed above. The data requirements of the model are
previously input to DATINP.

D-16




D-6.3.2.2. GPOMOD Correction Vector Creation Prompts. SMERFS
prompts for a flag which indicates whether or not software fault
corrections were performed in the same interval in which they
were detected. An e.ror correction vector is created if all
error detections and corrections happened during the same
intervals; otherwise, the user must enter the number corrected at
the end of each period of testing.

D-6.3.2.3. GPOMOD Input and Prediction Vector Creation Prompts.
The GPOMOD input prompts are exhibited in Figure D-6.1. The
first prompt lets the user terminate mcdel execution or specify
the method of estimating (i.e., maximum likelihood or least
squares) the model’s proportionality constant and the initial
total number of errors in the software. After the user enters
the desired method, GPOMOD prompts the user for the weighting
function or a list of the available functions. If the user
desires a list, two weighting functions are listed if least
squares was chosen as the method of model parameter estimation;
otherwise, one weighting function is listed. The third prompt
lets the user specify the weighting function which is either a
simple parabolic function or some other polynomial function of
order . If the latter choice is made, GPOMOD will additionally

prompt for the order, «, of the polynomial. If the maximum
likelihood method was selected earlier, the GPOMOD will prompt
the user for an initial estimate of . In either case, the user

is prompted for an initial estimate of the total number of
software errors and finally for the maximum number of iterations
to be used for the model parameter estimation method.

The GPOMOD prediction vector creation prompts occur later
upon successful convergence of the model parameter estimation
method.

D-6.4. Model Outputs. If the maximum number of iterations is
reached before a solution is found, SMERFS outputs attempted
estimates of the model’s parameters and the number of remaining
software errors. If processing errors occur, then appropriate
error messages are output. In either case, the user is allowed
to try again. If the model successfully converges to a solution,
the output .een in Figure D-6.2 occurs.

17
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PLEASE ENTER 1 FOR MAXIMUM LIKFLIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER THE WEIGHTING FUNCTION NUMBER, OR ZERO
FOR A LIST.

THE AVAILABLE WEIGHTING FUNCTIONS ARE
1 X() ** 2/2 (SCHICK-WOLVERTON MODEL)
2 X(l) ** ALPHA (WHER:z= ALPHA IS INPUT)

/= THE MAXIMUM L/)(EZ//'/OOD METHOD WAS SELECTED, THEN:
3 X(l) ** ALPHA (WHERE ALPHA IS ESTIMATED)
END I~
PLEASE ENTER THE WEIGHTING FUNCTION NUMBER.
IFANALPHA INPUT FUNCTION WAS SELECTED, THEN:
PLEASE ENTER THE DESIRED ALPHA.

ELSE, IF THEALPHA ESTIMATION FUNCTION WAS SELECTED, THEN:
PLEASE ENTER AN INITIAL ESTIMATE FOR ALPHA.
ENDIF

PLEASE ENTER AN INITIAL ESTIMATE OF THE TOTAL NUMBER OF
ERRORS.

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliabilit Func_.ons for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-6.1. GPOMOD Input Prompts.
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[7F THE MAXIMUM LKELIHOOD METFIOD (OTFHER THAN ALPHA ESTIMATED) WAS
SELECTED, THEN:
ML MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE _, AR_A
___[TERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF ( ' )

THE TOTAL NUMBER OF ERRORS IS
WITH APP. 95% C.l. OF ( ' )
THE REMAINING NUMBER OF ERRORS IS

WITH APP. 95% C.I. OF ( )

ELSE IFTHE LEAST SQUARES METFHOD WAS SELECTED, THEN:
LS MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE __, AFTER
___[TERATIONS ARE: '
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS
THE REMAINING NUMBER OF ERRORS IS

ELSE IF THE MAXIMUM LIKELIHOOD METHOD (WITH ALPHA ESTIMATED) WAS
SELECTED, THEN:

ML MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE 3, AFTE_
___ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS

THE REMAINING NUMBER OF ERRORS IS
ANDALPHAIS

ENDIF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.
THE EXPECTED NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF (_ )

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER'’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-6.2. GPOMOD Successful Convergence Output.




D-7. GOEL’'S NHPP MODEL.

D-7.1. Model Description. This model is one of the four models
within SMERFS that obtains reliability estimates and predictions
for interval data. It was developed by Amrit Goel and Kazu
Okumoto. Followil.g other models, it assumes that counts of
software failures over time intervals that don’t overlap feocllow a
Poisson distribution. A difference between this model and other
Poisson models is that this model treats a program’s initial
error content as a random variable, and not as a fixed constant.

D-7.2. Model Assumptions. Goel’s NHPP model (NPIMOD) makes the
following assumptions:

a. The software is operated in a way similar to its
expected operational usage.

b. The number of software errors detected in successive
time intervals are independent.

c. The probability of detecting any given error is the same
as the probability of detecting any cther given error. 1In
addition, each error is assumed to have equal severity.

d. At any time t, the cumulative number of errors detected
follows a Poisson distribution with mean m(t). m(t) satisfies a
first order non-homogeneous linear differential equation.

e. m((t) is a bounded, nondecreasing function of t which
approaches the expected total number of errors to be detected as
£t tends to .

D-7.3. Model Inputs. The model inputs include data entered
through the SMERFS DATINP and responses to prompts from the
SMERFS NPIMOD module.

D-7.3.1. DATINP Inputs. The data input through the SMERFS
DATINP module consists of the lengths of the various testing
intervals and the number of software errcrs discovered in each
testing interval.

D-7.3.2. NPIMOD Prompts. NPIMOD prompts consist of description
and list, input, and prediction vector creation prompts.

D-7.3.2.1. NPIMOD Description and List Prompt. NPIMOD prompts
the user to see whether he or she wants a list of the model’s
assumptions and data requirements. The assumptions listed are
those discussed above. The data requirements of the model are
previously input to DATINP.




D-7.3.2.2. NPIMOD Input and Prediction Vector Creation Prompts.
The NPIMOD input prompts are exhibited in Figure D-7.1. The
first prompt lets the user terminate model execution or specify
the method of estimating (i.e., maximum likelihood or least
squares) the model’s proportionality constant and the total
number of errors in the software. The second prompt allows the
user to enter an initial estimate for the model’s proportionality
constant. A number between 0 and 1 must be chosen to guarantee

convergence of the solution. It is recommended that the user
choose a small number first, say 0.05 or 0.1, and then gradually
increase it. The last prompt in the first menu lets the user

enter the maximum number of iterations to use for the estimation
method selected.

The NPIMOD prediction vector creation prompts occur later
upon successful convergence output of the model. Through these
prompts, NPIMOD lets the user compute predicted interval error

counts.

D-7.4. Model Outputg. If the maximum number of iterations is
reached before a solution is found, maximum iteration output
occurs unless a processing error happens. If the model
successfully converges to a solution, the output seen in Figure
D-7.2 occurs. If maximum likelihood is chosen, then ML estimates
are shown; otherwise, least squares estimates are output. 1In
either event, the user is allowed to estimate the number of
expected errors in the next testing period. Figure D-7.2 shows
ensuing output if the user does want an estimate of the number of
expected errors in the next testing period.




PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST SQUARES,
OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS. -

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER’Ss
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-7.1. NPIMOD Input Prompts.




JF THE MAXIMUM LIKELIKOOD METHOL WAS SELECTED, THEN:

ML MODEL ESTIMATES AFTER __ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF (
THE TOTAL NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF (

ELSE IFTHE LEAST SQUARES METHOD WAS SELECTED, THEN:

LS MODEL ESTIMATES AFTER __ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS

END IF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER'’s
Guide, Far:i, W.H., Smith, 0.D., December 1988

Figure D-7.2. NPIMOD Successful Convergence Output.




D-8. BROOKS AND MOTLEY’'S MODEL.

D-8.1. Model Description. This model actually consists of four
models each of which obtains reliability estimates and
predictions for interval data. They were developed by Brooks and
Motley of IBM and include the following: Binomial and Poisson
Models for a component of a program and Binomial and Poisson
Models for a program. Each of these models accounts for unequal
testing of programs in a given testing period.

D-8.2. Model Assumptions. Each model makes the following
assumptions:

a. The software is operated in a way similar to its
expected operational usage.

b. The ratio of the number of errors reintroduced during
the software correction process to the number of errors that are
detected is constant.

c. The probability of detecting any error during a given
unit interval of testing is constant for any occasion and
independent of error detections. The constant is denoted as g in
the case of the binomial model, and ® for the Poisson model.

D-8.3. Model Inputs. The model inputs include data entered
through the SMERFS DATINP and responses to prompts from the
SMERFS BAMMOD module.

D-8.3.1. DATINP Inputs. The data input through the SMERFS
DATINP module consists of the lengths of the various testing
intervals and the number of software errors discovered in each
testing interval.

D-8.3.2. BAMMOD Prompts. BAMMOD prompts consist of description
and list, fraction of code under test, extended description and
list, input, and prediction vector creation prompts.

D-8.3.2.1. BAMMOD Description and List Prompts and Fraction of
Code Under Test Prompt. BAMMOD prompts the user to see whether
he or she wants a list of the model’s assumptions and data
requirements. The assumptions listed are those discussed above.
The data requirements of the model are previously input to
DATINP. In addition, BAMMOD has extended descriptiosn and list
prompts which provide extended descriptions of the Binomial and
Poisson Models. The fraction of code under test prompt lets the
user compensate for partial software testing.

D-8.3.2.2. BAMMOD Input and Prediction Vector Creation Prompts.
The BAMMOD input prompts are exhibited in Figure D-8.1. The
first prompt lets the user select the appropriate model of
interest (Binomial or Poisson) or terminate model execution. The
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second prompt allows the user to either input or select an
initial estimate for «, the probability of correcting errors
without inserting new ones. If a decision is made to input o, a
suggested range is 0.85-0.95 if no prior knowledge is available.
In either event, the total number of errors and the error
detection probability are then estimated. The behavior of the
estimation process can be observed by trying both low values,
such as 0.05-0.1, and high values, such as 0.85-0.90 for the
error detection probability. The last prompt lets the user enter
the maximum number of convergence iterations to use for the
maximum likelihood estimation method of computing the model

parameters.

The BAMMOD prediction vector creation prompts occur later
upon successful convergence output of the model. Through these
prompts, BAMMOD lets the user compute predicted interval error

counts.




PLEASE ENTER 1 FOR THE BINOMIAL MODEL, 2 FOR THE POISSON
MODEL, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER 1 TO INPUT ALPHA (THE PROBABILITY OF
CORRECTING ERRORS IN THE PROGRAM WITHOUT INSERTING
NEW ERRORS), OR 2 TO ESTIMATE ALPHA.

IFALPHA IS TO BENPUT, THEN:
PLEASE ENTER THE DESIRED ALPHA.

PLEASE ENTER INITIAL ESTIMATES FOR THE TOTAL NUMBER
OF ERRORS AND THE ERROR DETECTION PROBABILITY.

ELSE IFALPHA S TO BE ESTIMATED, THEN:

PLEASE ENTER INITIAL ESTIMATES FOR THE TOTAL NUMBER

OF ERRORS, THE ERROR DETECTION PROBABILITY, AND
ALPHA.

ENDIF

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-8.1. BAMMOD Input Prompts.




J>-8.4. Model Outputs. If the maximum number of iteratrions is
reached before a solution is fourid, maximum iteration output
occurs unless a processing error happens. If the model
successfully converges to 2 solution, the output seen in Figure
D~-8.2 occurs. BAMMOD solutions are based upon maximum likelihood
estimates. The last estimate in the figure will be licced only
if the user selectec alpha estimation. Observing the lower
poertion of the figure, one may see that SMERFS allows for the
cptional prediction of errors in the next testing per:iod.

THE MOUELWITH ESTIMATES, AFTER INTERATIONS
ARE:
PROBAPRILITY OF DETECTING “RRORS _
THE TOTAL NUMBER OF ERRUAS IS

WFALPHA WAS ESTIMATED, THEN:

PROB. OF CORRECTING ERAORS WITHOUT ERRCR

ENOIF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING ! ERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

ENTER THE FRACTION OF THE PROGRAM TO BE TESTED
(FOR FULL PROGRAM, ENTER A 1).

HOW MANY ERRORS HAVE BEEN FOUND TO DATE IN THE SECTION
OF THE CODE TO BE TESTED.

THE EXPECTED NUMFER OF ERRORS IS

PLEASE ENTER 1 TO TRY ANMUTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-372 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS' USER’S
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-8.2. BAMMCD Successful Convergence Output.




D-9. NORMAN SCHNEIDEWIND’S MODEL.

D~-9.1. Model Description. This model is another one of the four
models within SMERFS that obtains reliability estimates and
predictions for interval data. It was developed by Norman
Schneidewind. The model theorizes that recent error counts are
generally more useful than earlier ones when predicting future
error counts because the error detection process changes as
testing progresses over time. The model employs three approaches
in utilizing error count data:

a. Use all error counts for all m intervals of testing.

b. Completely ignore error counts from the first s -~ 1
intervals of testing where 2 £ s £ m. Only data from intervals s
through m are considered.

c. For intervals 1 through s - 1 use the cumulative error
coant. For interval s through m, use the individual error
ceiuts.

D-9.2 Model Assumptions. The SDWMOD makes the following
assumptions:

a. The software is operated in a way similar to the way it
is expected to be used.

b. All errors are independent and occur with equal
probability.

c. The ratio of the error correction rate to the number of
errors to be corrected is constant.

d. As testing progresses, the mean number of errors that
are detected decreases from one interval to the next.

e. The length of each testing period is of the same
duration.

f. At the time of the test, the ratio of the rate of error
detection to the number of errors within the program is
constant. The process of error detection follows a
non-homogeneous Poisson process where the error detection rate
decreases exponentially.

D-9.3. Model Inputs. The model inputs include data entered
through the SMERFS DATINP and responses to prompts from the
SMERFS SDWMOD module.




D-9.3.1. DATINP Inputs. The data input through the SMERFS
DATINP consists of the number of software errors discovered in
each testing interval.

D-9.3.2. SDWMOD Prompts. SDWMOD prompts consist of description
and list, input, and prediction vector creation prompts.

D-9.3.2.1. SDWMOD Description and List Prompts. SDWMOD prompts
the user to see whether he or she wants a list of the model’s
assumptions and data requirements. The assumptions listed are
those discussed above. The data requirements of the model are
previously input to DATINP. The description prompt also includes
a description of the three approaches for utilizing the error
count data. SMERFS refers to these three approaches as the three
treatment types.

D-9.3.2.2. SDWMOD Input and Prediction Vector Creation Prompts.
The SDWMOD input prompts are exhibited in Figure D-9.1. The
first prompt lets the user terminate model execution or specify
one of the three treatment types. If treatment type is 2 or 3,
then the user must also enter the associated value of s. The
user is then prompted for an initial estimate of the 8 parameter
in the formula for the mean number of errors for the i-th period
of testing. Finally, the user is prompted for the maximum number
of iterations to use for the maximum l:kelihood method.

PLEASE ENTER THE DESIRED MODEL TREATMENT NUMBER, OR A 4
TO TERMINATE MODEL EXECUTION.

/F THE TREATMENT TYPE/S 2 OR 3, THEN:

PLEASE ENTER THE ASSOCIATED VALUE OF S.

ENDIF

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PARAMETER BETA,
WHERE THE MEAN NUMBER OF ERRORS FOR THE | -TH PERIOD

IS TAKEN AS:
MEAN() = ALPHA*(EXP(—BETA(l~ 1)) —EXP(—BETA())))/BETA.

PLEASE ENTER THE MAXIMUM NUMBER OF.ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER's
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-9.1. SDWMOD Input Prompts.
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The SDWMOD prediction vector creation prompts occur later
upon successful convergence output of the model. Through these
prompts, SDWMOL lets the user compute predicted interval error

counts.

D-9.4. Model Outputs. If the maximum number of iterationg is
reached before a solution is found, maximum iteration output
occurs unless a processing error happens. If the model
successfully converges to a solution, the output seen in Figure
D=-9.2 occurs. The o and B parameters of the errcor detection rate
formula and the weighted sum of squares between the predicted and
observed error counts are output. This latter quantity helps
decide which treatment type is best. Output also includes an
estimate of the number of errors expected in the next testing
period and the number of testing periods needed to discover the
next M errors, where M is specified by the user.

TREATMENT __ MODEL ESTIMATES AFTER ___ ITERATIONS ARE:

BETA

ALPHA
AND THE WEIGHTED SUMS ~ OF - SQUARES BETWEEN THE PREDICTED

AND OBSERVED ERROR COUNTS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTEI-:'l 1 FOR AN ESTIMATE OF THE NUMBER OF
TESTING PERIODS NEEDED TO DISCOVER THE NEXT
M ERRORS; ELSE ZERO. \1

PLEASE ENTER THE VALUE FOR M.

THE EXPECTED NUMBER OF PERIODS IS

PLEASE ENTER 1 TO TRY A DIFFERENT VALUE FOR M;
ELSE ZERO.

»+ THE ESTIMATE CANNOT BE MADE FOR THE SPECIFIED M VALUE.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) USER’s
Guide, Farr, W.H., Smith, 0.D., December 1988

Figure D-9.2. SDWMOD Successful Convergence Output.
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APPENDIX E

EXAMPLE SOFTWARE RELIABILITY TEST PLAN

E-1. SOFTWARE RELIABILITY SUBTEST

This subtest is concerned with determining software
reliability metrics for the software configuraticn of the MSE
System during Phase 1 testing. The NCS and LEN elements of that
configuration, which was for a U.S. Army division, were chosen
because of the functionality provided by these components. Were
i* not for time constraints. other components could have been
examined iu a similar fashion. Alternative analytical procedures
for examining other components (e.g., overall system reliability)
are included for those cases where the procedures would differ
from those used in the example analysis. It should also be noted
that quantitative reliability criteria was not available for this
example, but would be required for an actual test.

E-2. OBJECTIVE

The objective of this software reliability portion of MSE
testing is to determine the extent to which the MSE software can
be expected to perform its intended capabilities. This test plan
is limited to that portion of MSE consisting of the NCSs and
LEN. Reliability, availability, and maintainability (RAM) data
was not collected for the System Control Center (SCC), the
Digital Subscriber Voice Terminals (DSVTs), and the individual
Mobile Subscriber Radio Terminals (MSRTs) of the MSE system
during Phase 1 testing. Data from Radio Access Unit (RAU) and
Small Extension Node (SEN) components was not used during this
example software reliability estimation exercise.

E-3. CRITERIA

a. The mean time to failure (MTTF) of the NCS and LEN
subsystem software configuration of the MSE for an Army division
shall not be less than [the number of hours specified in the
appropriate requirements document].

b. The number of software faults remaining in the NCS and

LEN subsystems shall not exceed the value specified in the
appropriate requirements document.

E-4. DATA REQUIRED
a. The data required to calculate MTTF are:
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(1) The severity classification of each MSE software
failure.

(2) The time, measured in wall clock and/or CPU time,
at which each MSE software failure occurred.

(3) The time, measured in wall clock and/or CPU time,
at which each period of software testing began for each MSE
software component within each MSE assemblage.

(4) The time, measured in wall clock and/or CPU time,
at which each period of software testing ended for each MSE
software component within each MSE assemblage.

(5) The software component in which the software
failure occurred (e.g., CSOLOP software).

(6) The version of each MSE software component which
failed.

{(7) The number of installations of each software
component (e.g., the number of CSOLOP components running during
the Phase 1 test).

b. The data required to estimate the number of scftware
faults remaining are:

[Same as a. above]

E-5. DATA ACQUISITION PROCEDURE.

a. For each software failure which occurs during the test,
a problem report or test log identifying each software failure
detected will be prepared. The report shall contain, at a
minimum, the following information:

(1) The time, in wall clock or CPU time, at which the
MSE software failure occurred.

(2) The start time, in wall clock or CPU time, of the
testing period during which the MSE software failure occurred.

(3) The stop time, in wall clock or CPU time, of the
testing period during which the MSE software failure occurred.

(4) The version of the MSE software which failed.

(5) Initial assessment of the cause of the MSE
software failure.




(6) The severity classification of the MSE software
failure. To obtain the severity classification, classify each
software failure according to the following severity
classification scheme:

(a) Class A - A Class A software failure causes
service to be interrupted (for example, system not mission
capable due to crash).

(b) Class B - A Class B software failure causes
service to be degraded, but not brought to a complete standstill
(for example, partially mission capable, no mission essential
functions lost or aborted). The system still operates, but the
correction of the failure cannot be deferred.

(c) Class C - A Class C software failure has
minor tolerable effects. The correction of the failure can be
deferred.

(7) The MSE hardware system component in which the
installed software failed.

Acquire data items 2.1.3.a.
2.1.3.a2.4, 2.1.3.a.5, and 2.1.3.
reports.

1, 2.1.3.a.2, 2.1.3.a.3,
a.6, from the software problem

Data listed in item 2.1.3.a.7, above will be obtained from
an examination of a functional block diagram for each MSE NCS or
LEN assemblage and will result from multiplying the number of
installations in the diagram by the number of MSE assemblages in
which the installation occurs.

b. The data required to estimate the number of software
faults remaining are:

[Same as a. above]

E-6. ANALYTICAL PROCEDURES

These procedures outline the way in which the software
reliability metrics for the MSE software will be computed. The
approach is to compute these metrics for each software component
which performs a unique capability, or for groups of software
components which perform a unique capability. (Analysis for the
overall system software reliability would be performed in a
similar fashion, if that had been a criterion also). Application
of these procedures requires the use of software reliability
models.

a. Procedures to assess MTTF are:
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(1) It is assumed that the version of each software
component for the Phase 1 test was constant. However, the
version of each software component should be checked to ensure
the validity of this assumption.

(2) The software failure data input to the model
consists of time between failure data. Because there were
multiple installations of MSE software configurations (i.e., the
same software ran on more than one computer), the associated
software failure data has to be interleaved to determine the MTTF
of a given component.

(a) To compute the MTTF for the CSOLOP software
only, for example, the following is done. Time between failure
data is based on the cumulative execution time of all CSOLOP
software. Suppose, for example, one component runs in one NCS
while a second identical component runs in another NCS. The
start time of testing of the software is the time the first
component begins executing. The stop time of testing is the time
the last component stops executing. Software failure times are
adjusted to allow for the running of the same software at the two
NCSs. (For example, if a software failure occurred at 9:00 A.M.
in the CSQOLOP on one NCS which began executing at 8:00 A.M., and
the same vercion of the CSOLOP had been running on another
computer without failure since 8:30 A.M. the same day, then 8:00
A.M. would be regarded as the start time of testing for the
CSOLOP software and the first software time between failure would
be 90 minutes to adjust for the cumulative execution time of the
two installations of CSOLOP software). These adjusted times
between failures should be input to the model.

(b) Alternative procedure for the case where the
criterion applies to the overall system:

To compute the MTTF of the overall software system
itself, apply Musa’s simplified approach to distributed systems.
Using this approach, all of the software components can be lumped
together. That is, the software components can be regarded as
one system. A software failure due to an activation of a
software fault in any component is considered to be a system
failure. Software failure data is interleaved for each
component. Then, the resulting sets of interleaved software
failure data are merged to come up with time between failure data
for the system.

(c) Alternative procedure for the case where the
criteria are structured by the severity of failures.




(1) Once the MTTF of the MSE software system
is computed, MTTFs for each software failure class of the MSE
software cystem will be determined by dividing the overall MTTF
by the proportion of failures occurring in each software failure
class. The validity of this procedure depends on the assumption
that the proportion of software failures in each software failure
class remains constant with time. If the assumption is not
valid, then the procedure caanot be applied.)

(2) The Littlewood and Verrall Bayesian
Model, the Musa Execution Time Model, the Geometric Model, or
Amrit Goel’s Non-Homogeneous Poisson Process Model will be used
to determine the MTTF for the software configurations. Compare
the MTTF of each configuration below against its criterion in
section E-3 above. If the computed MTTF is less than the number
specified in the criterion, then that shall constitute a failure.

b. Procedures to assess the number of faults remaining are:

(1) Follow steps in Section E-6, paragraph a, except
for the models used for the analysis.

(2) The Generalized Poisson Model, the Non-Homogeneous
Poisson Model, the Brooks and Motley Model, or the Schneidewind
Model will be used to determine the number of software faults
remaining in the MSE software components. Compare the number of
faults remaining in each MSE software component against its
criterion above. For each component, if the number of faults
exceeds the value specified in the criterion, then that shall
constitute a failure.
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APPENDIX F
GLOSSARY

F-1. SCOPE

The following terms are identified and defined as they are
used throughout the Software Maturity Model Investigaticn.

Hazard rate

The conditional probkability that a software failure occurs
in an interval of time given that the software has not failed up
to the beginning of that time iInterval.

Mean Time Between Failure

The expected time between one errcr occurrence and another.

Mean Time To Repair

The expected time between the occurrence of an error and its
repair.

Remaining Number of Errors

The number of softwacre errors remaining in a program.

Software Error

A human error which introduces a fault in software.

Software Failure

A deviation of the operation of software from its
requiremerts. It is caused by a software fault.

Software Fault

A defect in software which causes a software failure to
occur when that software is executed.

Software Maturity

This is defined in AFOTECP 800-2 Volume 1, 1 August 1986, as
"a measure of the software’s evolution toward satisfying all
documenced user requirements."”

Software Performance Parameter

An objectively quantifiable measure of an aspect of software
behavior.
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Software Qual.ty Indicator

According to AMC-P 70-14, 30 April 1887, software quality
indicator~ are "quality indicators designed for and specifically
allied t¢ software projects." AMC-P 70-14 further defines
quality indicators as "process guidelines in the form of detailed
data, derived from scheduled surveys, inspections, evaluations,
and tests, that provide insight into the condition of a product

or process."




